リアルタイムなデータパイプラインを構築するためのデータエンジニア業務と、
機械学習モデルをより素早く安定的にデプロイできるようなCI/CDパイプラインの構築、効率よくデータを捌くためのミドルウェア開発、インフラ構築などを行う、MLOpsエンジニア業務をおまかせします。
GCPデータ基盤とその活用案件、は既に多数存在するものの、さらなる拡充を狙った専門人材の募集となります。
IP(知的財産)ビジネスがドメインの事業会社において、全社へ大きな影響を与える分析部門にアサイン頂きます。
【業務スコープ】
分析官や機械学習エンジニアと連携しながら、速く安全に機械学習のサイクルを回せるML基盤の構築をお任せします。
[データエンジニア概要]
■データパイプライン(リアルタイム)の設計・実装
(具体的な職務)
・収集対象:ECサイト
・データ分析基盤の開発・運用
・データを収集するETL/ELTパイプラインの開発
・運用体制構築のためのルール・ドキュメント整備
・上記を継続的に利用するための、ソフトウェアのバージョンアップや周辺ツールの開発(運用)
・技術調査
[MLOpsエンジニア概要]
■ ビジネス課題と要求の整理(案件の要件定義をPMと行える=足りない情報が何かを定義し、自身で要求できる)
■ 機械学習ワークフローの設計/開発/運用
■ データ提供のためのAPI設計/開発/運用(アプリ開発側との連携)
■ 機械学習モデルをより素早く安定的にデプロイできるようなCI/CDパイプラインの構築
■効率よくデータを捌くためのミドルウェア開発、インフラ構築
■ ML基盤内へログデータを収集・蓄積・加工する、一連のデータパイプラインの設計/開発/運用
(具体的な職務)
■ ビジネス課題と要求の整理(案件の要件定義をPMと行える=足りない情報が何かを定義し、自身で要求できる)
■ 機械学習ワークフローの設計/開発/運用
■ データ提供のためのAPI設計/開発/運用(アプリ開発側との連携)
■ 機械学習モデルをより素早く安定的にデプロイできるようなCI/CDパイプラインの構築
■ 運用体制構築のためのルール・ドキュメント整備
|