SciPyの案件一覧

過去に募集したエンジニア、データサイエンティスト、マーケターの案件を中心に掲載しています。
非公開案件を多数保有していますので、ご希望のイメージに近い案件をクリックして無料サポートにお申込みください。
専門コンサルタントがヒアリングを通じて最適な案件をご提案いたします。
単価や稼働日数などの条件面についてもお気軽にご相談ください。

該当件数:11

SciPyの案件を探す

案件内容

某製造業における冷温システムの異常検知システムにおけるデータ分析、モデル開発業務を
元請のAIコンサルタントおよびエンドクライアントの専門家と協業し、概念実証から本番導入まで
データサイエンティストのポジションでご参画頂きます。

ご担当いただく業務としては、以下を想定しております。
・異常検知(異常が発生した際の検知、または異常が起こる前の予兆の検知)における
 エンドクライアントの課題および要件を理解し、課題解決、達成に向け仮設の立案、データの収集・分析
・数理/機械学習モデルの予測精度や汎用性を向上させるための特徴量エンジニアリング
・目的に対して適切なモデルを選定、開発し仮設検証の実施
・一連の作業に必要な分析基盤の構築、運用

必須スキル
・数理モデルと機械学習を用いた異常検知プロジェクトの従事経験
・コンピューターサイエンス、電気工学、機械工学、制御工学、または関連する分野での学位を保有している方
(要件ヒアリング、関連データの収集と分析、特徴量選択/エンジニアリング、モデル開発、精度検証、結果報告まで一通りご対応した経験)
・温度、電力消費量、内部機構の稼働率などのセンサーから得られる時系列データを扱った経験
・Pythonを使ってデータ前処理、可視化、分析を実施した経験
 - scipy, pandas, matplotlib, seaborn…などの統計ライブラリや可視化ツールを用いたデータ分析
 - データベースやDataFrameを使いこなせる方 pandas、dask、modinなどのフレームワークを用いて、小規模から大規模までのデータを扱うことができる
 - 分類、クラスタリング、回帰、相関分析の豊富な経験
・ビジネスレベルの英語力(読み書きメイン)
案件内容

某製造業における冷温システムの異常検知システムにおけるデータ分析、モデル開発業務を
元請のAIコンサルタントおよびエンドクライアントの専門家と協業し、概念実証から本番導入まで
データサイエンティストのポジションでご参画いただきます。
■作業内容:
 ・異常検知(異常が発生した際の検知、または異常が起こる前の予兆の検知)における
エンドクライアントの課題および要件を理解し、課題解決、達成に向け仮設の立案、データの収集・分析
 ・数理/機械学習モデルの予測精度や汎用性を向上させるための特徴量エンジニアリング
 ・目的に対して適切なモデルを選定、開発し仮設検証の実施
 ・一連の作業に必要な分析基盤の構築、運用

必須スキル
・数理モデルと機械学習を用いた異常検知プロジェクトの従事経験 

 

・コンピューターサイエンス、電気工学、機械工学、制御工学、または関連する分野での学位を保有している方

 

・要件ヒアリング、関連データの収集と分析、特徴量選択/エンジニアリング、モデル開発、精度検証、結果報告まで一通りご対応した経験 

 

・温度、電力消費量、内部機構の稼働率などのセンサーから得られる時系列データを扱った経験
・Pythonを使ってデータ前処理、可視化、分析を実施した経験
– scipy, pandas, matplotlib, seaborn…などの統計ライブラリや可視化ツールを用いたデータ分析
・データベースやDataFrameを使いこなせる方 pandas、dask、modinなどのフレームワークを用いて、小規模から大規模までのデータを扱うことができる
・ 分類、クラスタリング、回帰、相関分析の豊富な経験
・ビジネスレベルの英語力(読み書きメイン)
案件内容

冷温システムの異常検知システム開発プロジェクトにおけるデータ分析・モデル開発業務を弊社AIコンサルタントおよび顧客の専門家と協力し、概念実証から本番導入までをデータサイエンティストとして推進して頂きます。具体的には、以下のような業務となります。

・異常検知(異常になった際の検知、または異常になる前の予兆の検知)における顧客の課題および要件を理解し、達成に向けての仮設立案およびデータの収集・分析を実施
・数理/機械学習モデルの予測精度や汎用性を向上させるための特徴量エンジニアリング
・目的に対して適切なモデルを選定・開発し仮説検証を実施
・一連の作業に必要な分析基盤の構築および運用

必須スキル
・コンピューターサイエンス、電気工学、機械工学、制御工学、または関連する分野での学位を保有
・数理モデルと機械学習を用いた異常検知プロジェクトの従事経験(要件ヒアリング、関連データの収集と分析、特徴量選択/エンジニアリング、モデル開発、精度検証、結果報告まで一通りご対応した経験)
・温度、電力消費量、内部機構の稼働率などのセンサーから得られる時系列データを扱った経験
・Pythonを使ってデータ前処理、可視化、分析を実施した経験
 - scipy, pandas, matplotlib, seaborn…などの統計ライブラリや可視化ツールを用いたデータ分析
 - データベースやDataFrameを使いこなせる方 pandas、dask、modinなどのフレームワークを用いて、小規模から大規模までのデータを扱うことができる
 - 分類、クラスタリング、回帰、相関分析の豊富な経験
案件内容

IoTやAIなどを活用した企業様で、機械学習の開発を行っていただきます。
既存システムがあり、そのシステムにAIを搭載させる形です。
ベースのものは完成していますが、AIの精度を高めていくために増員がかかっております。
既存システムの中で、EVの事業部とカーシェアリングの事業部があり、
まずはEVの方から実装させていき、うまくいけばカーシェアリングの方も実装させていくイメージで開発を行っていきます。

開発環境:
言語:Python 3.9/higher
基本ライブラリ:Numpy / SciPy / Pandas / Matplotlib

必須スキル
・Numpy/SciPy/Pandas/Matplotlibの業務使用経験 3年以上
・scikit-learn/TensorFlow/Kerasなどのディープラーニング・ニューラルネットワークライブラリの業務使用経験 1年以上
・AWS 関連 (特にRDSとS3) と連携する Python の開発経験 (現場ではboto3を使用) 1年以上
案件内容

■業務概要
・社内開発するシステムの要件定義/基本設計、詳細設計、製作、単体試験、結合試験
・外部委託するシステムの要件定義、基本設計以降のベンダーコントロール、受け入れ試験
・保守運用(メンテナンス、障害調査など)

■担当工程:要件定義,基本設計,詳細設計,実装,テスト,運用・保守
■開発手法:ハイブリッド
■企業情報
弊社は、IoTやAIなどを活用し「カーシェア」と「エネルギーマネジメント」を組み合わせた、全く新しいサービスを開発・提供するスタートアップです。

■開発チーム構成
開発組織全体で13名
プロダクトオーナー:1名
PM統括:1名
エネルギーマネジメントシステム:PM1名、SE1名、PG3名、インフラ1名
カーシェアシステム:PM1名(+パートナー企業)
SGW、車載器:PM1名、IoTデバイス開発PM1名(+パートナー企業)
運用監視補助1名
インフラ:1名

■チームの役割
eモビリティをマネジメントするプラットフォームにおける、AIシステム、エネマネシステム、カーシェアシステムの各サービスの内容を適切に把握し、社内・社外をしっかり取りまとめつつ要件定義から運用まで一連の流れをスムーズに遂行していただきます。

 ❐ AIシステム:
 カーシェアリング利用とバッテリーの効率利用の両立を可能にします。
 ビッグデータを活用した充放電制御のための各種パラメータの予測にはAIによる最適化を行う予定。

 ❐ カーシェアリングシステム:
 顧客向けサービスの提供(カーシェアアプリ含む)、車両の管理が可能。

 ❐ エネルギーマネジメントシステム:
 AIを活用した、充電器の管理、再生可能エネルギーのコントロール、効率利用が可能。

■募集背景
既存システム開発の機能拡張や改修のための増員

■開発環境
言語:Python 3.9/higher
基本ライブラリ:Numpy / SciPy / Pandas / Matplotlib

必須スキル
・Numpy / SciPy / Pandas / Matplotlib の業務使用経験 3年以上
・scikit-learn / TensorFlow / Keras などのディープラーニング・ニューラルネットワークライブラリの業務使用経験 1年以上
・AWS 関連 (特に RDS と S3) と連携する Python の開発経験 (当社では boto3 を使用) 1年以上
案件内容

・社内開発するシステムの要件定義/基本設計、詳細設計、製作、単体試験、結合試験
・外部委託するシステムの要件定義、基本設計以降のベンダーコントロール、受け入れ試験
・保守運用(メンテナンス、障害調査など)

必須スキル
・Numpy / SciPy / Pandas / Matplotlib の業務使用経験 3年以上
・scikit-learn / TensorFlow / Keras などのディープラーニング
・ニューラルネットワークライブラリの業務使用経験 1年以上
・AWS 関連 (特に RDS と S3) と連携する Python の開発経験 (当社では boto3 を使用) 1年以上
案件内容

・機械学習/深層学習の研究/アルゴリズム実装
・大手企業と連携した研究/ソリューション開発、自社プロダクトの開発

必須スキル

・Scipy/Numpy, Scikit-Learn, Pandas, Tensorflow, Keras, Chainer, PyTorchなどのフレームワークを利用した機械学習における実装経験
・機械学習の理論的背景を理解
・機械学習のモデルの理解(線形回帰, アンサンブル学習, 勾配ブースティング, RNN, CNN, GCN, GAN, YOLOなど)
・論文のモデルを実装する能力
・複数のセンサやデバイスを用いたシステムの構築・運用経験
・機械学習を用いたロボット制御システムのインテグレート経験
・高いコミュニケーションスキル(ビジネスレベルの日本語)
※全てを満たしている必要はございません。

案件内容

[ポジション]:AIエンジニア

・機械学習/深層学習の研究/アルゴリズム実装

・大手企業と連携した研究/ソリューション開発、自社プロダクトの開発

必須スキル

・Scipy/Numpy, Scikit-Learn, Pandas, Tensorflow, Keras, Chainer, PyTorchなどのフレームワークを利用した機械学習における実装経験
・機械学習の理論的背景を理解
・機械学習のモデルの理解(線形回帰, アンサンブル学習, 勾配ブースティング, RNN, CNN, GCN, GAN, YOLOなど)
・論文のモデルを実装する能力
・複数のセンサやデバイスを用いたシステムの構築・運用経験
・機械学習を用いたロボット制御システムのインテグレート経験
・高いコミュニケーションスキル(ビジネスレベルの日本語)

案件内容

[ポジション]:AIエンジニア

弊社クライアントの機械学習エンジニアチーム、ビジネスチームと共に、大手企業、研究機関、自治体とのプロジェクトに参画頂き、学習モデルの開発に従事頂きます。

基本的なチーム体制は弊社機械学習エンジニア、コンサルタントメンバーとチームで進行します。

必須スキル

・ビジネスレベルの日本語
・論文のモデルを実装する能力
・Scipy/Numpy, Scikit-Learn, Pandas, Tensorflow, Keras, Chainer, PyTorchなどのフレームワークを利用した機械学習におけるプロジェクトにおける実装経験

検索結果11件中1-10件