フリーランスのAIエンジニアになる方法って?案件獲得方法や年収相場、収入アップのポイント
ニーズが高まっているとされるAIエンジニアの領域ですが、ゆくゆくは独立してフリーランスとして活躍したいと考えている方も多いのではないでしょうか。
この記事では、フリーランスAIエンジニアの求人案件数や平均年収といった実情、必要とされるスキルや独立への流れについてご紹介していきます。案件を獲得する方法や、失敗しないための注意点についても解説していますので、参考にしてみてください。
目次
- 1 フリーランスのAIエンジニアの仕事内容・案件例
- 2 フリーランスのAIエンジニアの求人案件数
- 3 フリーランスのAIエンジニアの年収相場・案件の単価相場
- 4 副業の案件例
- 5 フリーランスAIエンジニアとして独立する流れ
- 6 未経験からフリーランスAIエンジニアになる方法
- 7 フリーランスAIエンジニアのスキル
- 8 フリーランスのAIエンジニアが案件を獲得する方法
- 9 フリーランスのAIエンジニアの案件獲得におすすめのサービス
- 10 AIエンジニアにおすすめのフリーランスエージェント4選
- 11 フリーランスAIエンジニアを目指す人が取得しておくべき資格
- 12 フリーランスのAIエンジニアが収入アップするためのポイント
- 13 AIエンジニアの独立で失敗しないために
- 14 フリーランスAIエンジニアの将来性
フリーランスのAIエンジニアの仕事内容・案件例
フリーランスのAIエンジニアは、どのような仕事を担当するのでしょうか。ここでは、フリーランスのAIエンジニアが担当する仕事の内容や案件の例をご紹介します。
- AI開発
- ディープラーニング
- データ解析
- 画像認識
- 音声認識
- 自然言語処理
- 異常検知
AI開発
AI開発は、AIエンジニアの代表的な仕事の1つです。プログラミングでAIモデルやAIモデルを組み込んだシステムの開発を担当します。近年、AIを活用したシステムが様々な業界で注目されており、AI開発の市場は急速に拡大しています。案件を受注するには、Pythonなどを用いたシステム開発経験はもちろん、AIや機械学習分野についての専門的な知見も必要です。フリーランス向けのAI開発案件も増えており、今後も需要が期待できるでしょう。
ディープラーニング
ディープラーニングは、AI開発に欠かせない機械学習分野の技術の一つです。コンピュータ自身が大量のデータを介して情報の特徴を見つけ出す技術で、人手を介さずに行えることから自動化を推進できるため、医療や製造現場などで導入が進んでいます。ディープラーニング技術を使ったシステム開発は急増しており、フリーランスの案件も増えています。それに伴って、単価アップが期待されています。
データ解析
データ解析案件は、テキスト解析・社内データ解析など、主に文字データを扱うものが多数あります。テキスト解析の例としてはSNSなどを介したユーザーの動向を把握し、企業のマーケティング活動に活かすといった内容が挙げられます。社内データ解析では、社内の基幹システムなどに蓄積された社内データを解析することで、需要の予測や業務効率化など営業活動の改善に貢献しています。これらは、システム開発やデータ解析経験に加え、マーケティングの知識なども要求されます。
近年では、画像や動画、音声やセンサーデータの解析案件も増えています。画像や動画の解析は、製造業での品質チェックや不良品の自動検知を可能にしています。音声解析の案件としては、音声を文字データにしたり、店舗に人がいなくても接客ができたりするシステム開発などがあります。
画像認識
画像認識は、AIの代表的な活用事例の1つです。画像に映る人やものを認識する技術のことで、様々な分野で活用が進んでいます。画像に映っているものを認識したり、画像に映っている人の顔を特定したりする技術で、応用可能な範囲が広く、案件の数も増えてきています。コンクリート構造物の劣化診断を行う画像認識システムや、製造業での外観検査システムなど、幅広い業界で高単価な案件が紹介されています。
音声認識
音声認識も、AIの応用分野として注目が集まっています。近年では、スマートスピーカーに代表されるように、人の音声を認識して声だけでシステムを操作する技術も登場しています。画像認識に比べると案件数は少なめですが、音声認識機能を搭載したアプリケーション開発の案件が代表的です。
自然言語処理
人間が扱う自然言語を処理する技術も、AIの活用事例の1つです。人間の話し言葉や書き言葉を認識し、AIによって解析・活用する技術です。検索エンジンの最適化や文字入力の変換処理、音声対話や翻訳などの分野で活用されています。フリーランス向け案件としては、飲食店向けの音声予約サービスの開発や法規関連文書の選別システムの開発など、様々な分野での開発案件が募集されています。
異常検知
異常検知ツールの開発案件も、フリーランス向けに多数募集されています。大量のデータから、通常とは異なるデータを検出する技術のことで、製造業などで注目が集まっています。画像認識や自然言語処理に比べると案件数は少ないものの、不良品判別モデルのPoCや検品用システム開発などの案件があります。
フリーランスのAIエンジニアの求人案件数
近年、フリーランスのAIエンジニア向け求人案件数は増えつつあります。もちろん、従来のシステム開発やWebアプリケーション開発に比べるとまだまだ少ないものの、今後さらに需要が伸びていくのではないかと考えられています。
たとえば、AI・データサイエンスに特化したフリーランスエージェントである「BIGDATANAVI」では、「AIエンジニア」向けの案件は「156件」紹介されています。(2023年4月現在)
フリーランスのAIエンジニアの年収相場・案件の単価相場
フリーランスのAIエンジニアを目指す場合、気になるのは年収相場でしょう。ここではフリーランスのAIエンジニアの年収相場や、案件の種類別に単価相場をご紹介します。
年収相場
フリーランスのAIエンジニアの年収相場は、およそ「800万円」程度になるでしょう。たとえば、大手フリーランスエージェント「フリーランススタート」では、「AIエンジニア」向け案件の平均月額単価は「74万円」で、年収に換算すると「888万円」となります。案件によって単価には幅があるため、全員がこれだけの収入を得られているわけではないということに注意が必要です。
また、AI・データサイエンス分野に特化したフリーランスエージェントである「BIGDATANAVI」では、「AIエンジニア」向け案件の月額単価は、最低「90万円」から最高「170万円」となっています。
週2~3日案件の単価相場
AIエンジニア向けの案件の中には、週2~3日稼働できる案件もあります。稼働日数が少なくなるほど単価は下がってしまうため、週に5日フルに稼働する案件よりも単価相場は低めになります。週2~3日案件の単価相場は、およそ60万円程度になります。一般的な会社員の月収よりは高い金額になるため、この点からもAIエンジニアの需要の高さがわかります。
常駐型の単価相場
AI開発では、常駐型の案件も多数募集されています。現場に常駐するため、リモートワークよりも自由度は下がりますが、メンバー間で密にコミュニケーションをとりながら働けるため、効率的に作業を進められることもあります。AIエンジニアの場合、基本的には常駐型案件でも在宅型案件でも単価に大きな差はありません。常駐・リモート併用の案件も多数あります。常駐型の単価相場としては「70~90万円」程度と理解しておけばよいでしょう。
在宅型の単価相場
フリーランスのAIエンジニア向け案件の中には、在宅型の案件も多数あります。場所を問わず働けるため出勤の必要がなく、柔軟に働きやすい案件です。常駐型と金額面での大きな差はなく、平均月額単価は「70~90万円」程度になると考えてよいでしょう。
副業の案件例
実際にどのようなAIエンジニアの副業案件があるのか、気になる人もいるでしょう。ここからは、副業の案件例をいくつかご紹介していきます。
案件例|自社製品へのAI組み込みやデータ分析
内容 | |
---|---|
職種 | AIエンジニア |
単価目安 | ~¥60,000/ 月 |
業務内容 | 自社製品へのAI組み込みやデータ分析 |
必須スキル |
・自然言語処理に関する開発をされたご経験が3年以上 ・Python(機械学習)を利用した開発のご経験 |
案件例|カード会社の不正検知学習モデル構築
内容 | |
---|---|
職種 | AIエンジニア |
単価目安 | ~¥1,000,000/ 月 |
業務内容 | 機械学習モデル、推論機能の設計・実装 |
必須スキル |
・大量のトランザクションデータを使って顧客の行動予測した経験 ・機械学習モデルの学習、評価、デプロイ経験 ・大量データのパイプラインをDatabricks上で、設計・実装経験 |
案件例|生成AI技術の導入と運用支援
内容 | |
---|---|
職種 | AIエンジニア |
単価目安 | ~¥1,300,000/ 月 |
業務内容 | 生成AIツールの評価、導入、カスタマイズ AIを活用した開発プロジェクトの計画、実行、評価 業務プロセスの分析と改善点の特定 |
必須スキル |
・ソフトウェア開発やプログラミングの実務経験(1年以上) ・AI技術・機械学習に関する実務経験(1年半以上) ・生成AIツールの実務経験(例:GPT-3、Codexなど) ・プロジェクトマネジメントのスキル ・業務プロセスの分析スキル ・優れたコミュニケーション能力 ・ドキュメンテーション能力 |
フリーランスAIエンジニアとして独立する流れ
AIエンジニアがフリーランスとして活動するのに、必要なステップや行うべきことがありますが、こちらではメインとなる3つの点に絞ってご紹介します。
就職してAIの実務経験を積む
どの仕事にも言えることですが、特にAIエンジニアとして活躍したいのであれば携わる分野の知識や技術に加え、経験が重視されます。フリーランスで活躍したいAIエンジニアは、まず企業に就職して最低でも1年程度エンジニアとしての実務経験を積むとよいでしょう。企業に雇用されている間にソースコードを書くなどの下流工程だけでなく、マネジメントスキルが必要な上流工程や、トレンドとなっているディープラーニングなどの分野で経験を積むと、獲得できる案件の種類が増えるとともに、単価アップの可能性も出てきます。
経歴をポートフォリオにまとめ営業する
案件を発注する企業は、各エンジニアのポートフォリオをチェックし、依頼すべきかどうかを判断します。ポートフォリオは自分のスキルや今までの実績などを記載する、いわば「職務経歴書」のような働きをします。自己紹介や実際に手掛けたプロジェクトやアプリをまとめたポートフォリオをあらかじめ用意しておき、営業の際に使用すると、案件獲得に役立つでしょう。
独立してフリーランスで活動する
AIエンジニアに求められるスキルや経験を積み上げるとともに、ポートフォリオの作成など必要な準備を行うと、独立し、フリーランスとして活動できます。可能であれば会社員時代にクラウドソーシングなどを利用して副業を行うと、フリーランスで仕事を行う感覚をつかむことができるでしょう。フリーランスとして活動するにあたり、開業や青色申告の手続き、社会保険の切り替え、仕事を行う環境づくりをしておくと業務に集中しやすくなります。
未経験からフリーランスAIエンジニアになる方法
未経験からフリーランスAIエンジニアになるのは難易度が高いですが、着実に努力することで実現できます。具体的な方法として次のものがあげられます。
- 基礎となるスキルを習得する
- 企業のエンジニアとして実務経験を積む
- まずは副業からスタートする
- 独立してフリーランスとして活動する
基礎となるスキルを習得する
まずは、基礎となるスキルを習得しましょう。AIエンジニアでは機械学習やディープラーニングをはじめプログラミングや数学、統計学の知識が必要です。加えて、フリーランスとしてのスキルも必要不可欠。クライアントと円滑にやり取りできるコミュニケーションスキルや、事務的なスキルも必要といえます。
企業のエンジニアとして実務経験を積む
いきなりフリーランスとして独立する前に、企業のエンジニアとして実務経験を積んでおくとスムーズに独立できます。企業の実務経験があると、フリーランスとして営業する際に「実績」を示せるため、案件を獲得しやすいです。可能であれば3年程度キャリアを積んでおくのが望ましいでしょう。
まずは副業からスタートする
退職していきなりAIエンジニアのフリーランスとして活動するのは難易度が高く、不安も大きいでしょう。不安な方は、会社員を続けながら副業からスタートさせるのがおすすめです。本業とのバランスを考える必要はあるものの、副業としてAIエンジニア案件に着手することで、案件の進め方を学べたり、独立の手応えを掴めたりします。
独立しフリーランスとして活動する
知識やスキルに自信がついたら、独立してフリーランスとして活動しましょう。ただし、フリーランスになると、エンジニア業務のほか、営業から事務作業も自分で行わなければなりません。コミュニケーション能力や事務的なスキルも問われるので、同時並行で学ぶことが大切です。
フリーランスAIエンジニアのスキル
フリーランスで活躍できるかどうかは、エンジニアが持つスキルに大きく依存します。こちらでは、フリーランスAIエンジニアに必要なスキルのうち、主なものをご紹介します。
Python
AIエンジニアに必要とされる技術の一つが、Pythonです。Pythonを使ってAI開発や機械学習などを行うため、フリーランスとして活躍するには、Pythonの知識とともに自由に使いこなすスキルが必須といえます。Pythonには、効率よく開発を進めるためのフレームワークやライブラリが豊富に用意されています。言語を操るだけでなく、代表的なライブラリなどを扱えるようにしておくとよいでしょう。
データ処理
AIエンジニアは、フリーランスかどうかに限らず、ビッグデータなど大量のデータを扱うことが多くなります。収集したデータを分析する前に、データの型を整えるデータクレンジングなどの作業が必要になるケースも多々あります。データベースの構築やSQLによるデータ抽出、加工といった技術はあらかじめ習得しておくとよいでしょう。各分析に適した形でデータ構造を整えるには、データ処理に関するセンスが求められます。データ処理技術があれば効率よく業務を遂行できるので、実質的に単価アップが実現できるでしょう。
数学
一説によるとAIエンジニアは、大学レベルの数学知識が求められるとされます。人工知能開発に携わるAIエンジニアは、プログラムに組み込むアルゴリズムといわれる計算手順を理解している必要があります。その際に、確率や微分・積分、行列暗算といった数学の知識を用いることで、アルゴリズムの理解がより深まります。また、膨大なデータ処理についても線形代数などの数学の知識が役立つため、数学のベースは必須といえるでしょう。
統計
数学に関連して統計の知識も必要不可欠とされます。特にデータ解析において統計学が活用されますので、数学と同様に知識を備えておきましょう。AI開発はライブラリなどを使って行うことができますが、ロジックがわかっていると応用が利き、開発効率を上げることもできます。フリーランスのAIエンジニアは引く手あまたとはいえ、単価の高い案件を得るには他のエンジニアとの差別化がポイントになります。同じ時間内により多くの結果を出せるフリーランスAIエンジニアは重宝されますが、統計はそのカギとなる可能性があります。
機械学習
ディープラーニングが注目されるようになり、AIエンジニアにも機械学習のスキルが求められています。機械学習用のライブラリを取り扱ったり、それぞれの環境に最適なフレームワークを選別したりするスキルは、開発工数を大幅に減らすのに役立ちます。
コミュニケーション
AIエンジニアは多くの人と協力しながら開発を進めていきます。そのため、自分の考えや状況を他の人が理解しやすいように説明したり、他の人の意見を上手にヒアリングしたりするスキルが求められます。また、フリーランスとしてやっていくのであれば、クライアントの意向を正確に理解したうえで成果物を納品しなければなりません。コミュニケーション能力が高いフリーランスAIエンジニアは、連携がとりやすい開発メンバーとして注目され、継続的な案件獲得につながることもあるようです。
自己管理
上司など、自分を管理してくれる存在がいる会社員とは違い、フリーランスエンジニアは自己管理能力が問われます。納期に間に合うように仕事をするには、技術的なスキルだけでなく、健康管理も必要です。自己管理能力には、最新のトレンドについていくために計画的に勉強したり、税金の納付など金銭的なマネジメントも含まれます。
営業
会社勤めの時なら案件獲得は営業部員の仕事だったかもしれませんが、フリーランスになると案件獲得のための営業活動も自分の仕事となります。技術屋としての仕事に加え、営業を行わなければ収入が得られませんので、こうした営業スキルも求められます。営業に際しては、自分のスキルや実績を効果的にアピールするなど、積極的な姿勢が必要になります。
フリーランスのAIエンジニアが案件を獲得する方法
フリーランスになると、自ら仕事を得る努力が求められますが、案件を獲得する方法はいくつかあります。こちらでは、メインとなる4つの方法をご紹介します。自分に合った方法を見つけ、安定した案件獲得を目指しましょう。
エージェントを利用する
フリーランスのAIエンジニアが案件を獲得する一般的な方法として、フリーランス向けのエージェント利用が挙げられます。エージェントは企業とのコネクションを利用し、多くの案件を保有しています。それぞれの企業や案件で、どんなスキルや資質を持つエンジニアが求められているかも理解しているので、自分の能力を発揮できる仕事を紹介してもらえる確率が高くなります。エージェントは、公募されていない好条件の非公開求人を持っていることもあり、条件の良い仕事を得られるケースもあります。忙しいエンジニアに代わって、面接日程の調整や条件交渉などを代行するエージェントもあり、活用したいチャネルといえます。
クラウドソーシングで獲得する
IT業界の仕事はリモートワークと親和性が高いものが多く、クラウドソーシングを通し多くの案件を見つけることができます。それは、AIエンジニアも例外ではありません。隙間時間を活用したい、パートタイムで行いたいなど、時間や業務ボリュームの融通が利く仕事を希望する方は、クラウドソーシングで探すとよいかもしれません。
知り合いなどの紹介
友人・知人といったつながりを通して仕事を得ることもできます。周囲にIT企業の経営者など、AI開発にかかわる仕事を発注できる立場の方がいれば、声をかけることで案件獲得につながるかもしれません。知り合いの紹介は、信頼関係がすでに構築されているところから仕事をスタートできるため、スムーズな進行が可能となり、継続的に案件が得やすいメリットもあります。
自分で営業する
企業のホームページなどに掲載されている案件募集に自ら応募することで、仕事を獲得する方法もあります。コネクションがない状態から営業をかける難しさはありますが、成功すればダイレクトに案件を獲得できるので、マージンなどを差し引かれることなく高い報酬が得られるかもしれません。
フリーランスのAIエンジニアの案件獲得におすすめのサービス
フリーランスのAIエンジニアが案件を獲得する場合、フリーランスエージェントの活用が最もおすすめです。しかしながら最近では、フリーランスエージェントは多数運営されているため、どのエージェントを活用すべきか、判断がつかない方も多いでしょう。
AIエンジニアとしてフリーランスになりたい方は、一般的なフリーランスエージェントだけでなく、AI・データサイエンスに特化したエージェントを活用してみましょう。AIエンジニア向けの案件も増えてきているとはいえ、一般的なシステム・アプリケーション開発に比べるとまだまだ数が少なく、AI開発に携わった経験のあるエージェントも多くはいません。AI・データサイエンスに特化したエージェントであれば、より効率的に案件を獲得でき、AI分野に詳しいエージェントのアドバイスを受けることもできます。
AI・データサイエンスに特化したエージェントとしては、「BIGDATANAVI」がおすすめです。豊富な案件数と、業界事情に精通したスタッフによるサポートが魅力で、副業から独立まで手厚い支援を提供しています。
AIエンジニアにおすすめのフリーランスエージェント4選
続いて、AIエンジニアにおすすめのフリーランスエージェントを4つご紹介します。
- BIGDATA NAVI
- ITプロパートナーズ
- レバテックフリーランス
- Midworks
BIGDATA NAVI
引用元:『BIGDATA NAVI』
BIGDATA NAVIは、IT人材向けのフリーランスエージェントです。なかでも「AI」や「データ分析」に特化しており、AIエンジニアをはじめデータサイエンティスト、分析基盤エンジニアなど職種ごとに多くの案件が用意されています。職種からプログラミング言語、環境・ツールごとに案件を探せます。
ITプロパートナーズ
引用元:『ITプロパートナーズ』
ITプロパートナーズは、3,000件以上のフリーランス案件が掲載されているエージェントです。なかでも週2~3日稼働の案件が多く、AIエンジニア向けの案件も豊富。リモートやフレックスタイムなど多様な働き方に対応した案件も多いです。
企業と個人間に仲介会社を挟まず中間マージンが発生しないことから高単価を実現。スタートアップやベンチャー案件も多く、AIエンジニアとして腕試ししたい方にもおすすめできます。勢いのある企業から仕事を獲得することで、短期間でAIエンジニアとしてのスキルを高められるでしょう。
レバテックフリーランス
引用元:『レバテックフリーランス』
レバテックフリーランスは、AIエンジニアを含む「ITエンジニア」に特化したフリーランスエージェントです。20年以上の運営歴に基づいた豊富なノウハウを提供。「案件数が豊富」「単価の上昇率が高い」「条件が幅広い」といった特徴があり、公開案件から非公開案件まで豊富です。
ユーザーにとって使いやすいインターフェースも特徴。市場分析ダッシュボード、稼働状況確認ウィジェット、気になる案件のお気に入り登録など便利な機能が充実しています。フリーランスのAIエンジニアとして独立したい方にもおすすめです。
Midworks
引用元:『Midworks』
Midworksは、10,000件以上の案件が掲載されている、ITエンジニア向けのフリーランスエージェントです。依頼者のスキルやキャリアに合った案件を紹介してくれます。業界に精通したコンサルタントが案件参画をサポートしてくれるため、フリーランスとしての営業に不安がある方にもおすすめ。万が一案件が切れてしまった場合の報酬保証サポートも付帯しています。
月間50万円〜100万円以上の案件が多く、公開案件のみならず非公開案件も豊富です。AIエンジニア向けの案件も多く、「Python」や「JavaScript」などプログラミング言語ごとに案件を検索できます。
フリーランスAIエンジニアを目指す人が取得しておくべき資格
フリーランスAIエンジニアを目指す方におすすめの資格として、次のものがあげられます。
- 基本情報技術者試験
- Pythonエンジニア認定試験
- 統計検定
- G検定・E資格
基本情報技術者試験
基本情報処理技術者試験は、IPA(情報処理推進機構)が運営する試験です。ネットワークやセキュリティ、財務、マーケティング、データの構造やアルゴリズムなど基礎から応用まで幅広く出題されます。多くのシステムエンジニアやプログラマーが受講するため、AIエンジニアにも役立ちます。出題は「科目A」と「科目B」に分かれ、前者はマークシート方式、後者は長文読解式です。
Pythonエンジニア認定試験
Pythonエンジニア認定試験は、プログラミングの中でも汎用性の高い言語「Python」のスキルを証明するための試験です。基礎やデータ分析、実践などレベルに応じた試験が用意されています。Pythonのライブラリやフレームワークのスキルは、機械学習を学ぶうえでも重要です。AIエンジニアにとっては、持っておいて損のない資格といえるでしょう。
統計検定
統計検定とは、一般社団法人日本統計学会が認定する全国統一試験です。難易度が高い順に1級、準1級、2級、3級、4級に分類され、統計に関する基礎知識や応用スキルが問われます。4級ではデータや表、グラフを用いた簡単な統計知識が問われ、1級になると大学の専門課程レベルの統計知識・スキルが必要です。AIエンジニアにとっても、保有していて損のない資格といえるでしょう。
G検定・E資格
G検定・E資格は、一般社団法人日本ディープラーニング協会が主催するAI関連の資格です。G検定ではAIやディープラーニングに関する基本的な知識や手法、応用を学べます。E資格はエンジニアのAI・ディープラーニングスキルを証明するための資格です。
フリーランスのAIエンジニアが収入アップするためのポイント
フリーランスAIエンジニアとして高収入を得るには、経験やスキルに加え、稼ぐためのポイントを理解しておくのも大切です。
ディープラーニング案件の実績を積む
ディープラーニング案件の実績を積むのも、収入アップに有効な手段です。ディープラーニングはAI開発の根幹となる技術なので、ディープラーニングについての知識や実績があると、幅広い案件に参画できる可能性が上がります。AI関係のあらゆる分野で役立つスキルなので、ディープラーニング関係の実績を積むことができれば、さらに活躍の場が広がるでしょう。
商流の浅い案件を受注する
商流が浅い案件とは、実際に仕事を発注するエンド企業と仕事を受注する自分との間に入っている仲介企業の数が少ない仕事を指します。仲介企業の数が多ければ多いほどマージンが増加し、手元に入る金額が少なくなるので、直接受注またはそれに近い形での案件受注が有利です。
市場価値に見合う報酬を得る
求められるスキルや経験に見合った報酬の仕事をすると、満足度が高くなりモチベーションも維持しやすくなります。市場価値よりも低い報酬で働いてしまうと、AIエンジニア全体の市場価値を低めることにつながり、ひいては自分の報酬にも響いてくる可能性があります。また、トレンドとなっているディープラーニングの案件はニーズも高く、市場価値から考えても高額報酬の可能性があります。ニーズの高い案件を選ぶことも、フリーランスエンジニアとして稼いでいくには大切なポイントです。
上流工程やマネジメントの経験を積む
AIエンジニアであるかどうかに限らず、IT業界の開発プロジェクトでは、上流工程やマネジメントを行える人材の方が報酬は高くなる傾向があります。難易度の高い仕事でその分責任も重くなりますが、比例して報酬もアップするので、上流工程やマネジメントの経験は積んでおいた方がよいでしょう。
AIエンジニアの独立で失敗しないために
AIエンジニアであれば、誰でもフリーランスになって成功できるわけではありません。フリーランスAIエンジニアとして満足感の高い仕事を継続するには、いくつかのポイントをおさえておくことが重要です。
独立前にしっかり準備する
フリーランスとして成功するには、事前の準備がカギを握ります。キャリアの方向性を見定め、自分を選んでもらうためのユニークなスキルを磨く必要があります。独立してからのリスクを把握し、その回避策を考えておくこともできるでしょう。独立すると、会社がやってくれていた税金や社会保険の手続きや納付、福利厚生のありがたさを実感する人が多いようです。フリーランスになると手薄になる部分をカバーするサービスを理解しておくとよいかもしれません。
独立後もモチベーションを維持する
フリーランスになると、会社で提供されていた研修や勉強会の機会が減ってしまいます。AI開発の技術は、日進月歩で進化しています。人によっては、会社員時代よりも、フリーランスになってからキャリアを終えるまでの期間の方が長くなります。セミナーに参加するなどして最新事情に触れ、キャリアアップの機会を積極的にとらえる必要があります。また、時間や場所に融通がきくためにキャパシティを超えて働きすぎてしまうこともありえますので、モチベーションを維持するためにもスケジュール管理や自己管理を適切に行うようにしましょう。
収入を得る手段を複数持つ
会社員であれば安定した収入が見込めますが、フリーランスの場合は収入の保証がありません。案件が途切れないよう、収入を得る手段やチャネルを、一つではなく複数持っておくことが推奨されます。リスクを分散し、安定的な収入につなげるためにも複数の案件先を常に持っておくことはフリーランスにおいて重要なポイントです。
得意分野や専門性を磨く
フリーランスでAIエンジニアを続けるには、自分の得意分野や専門性を磨くことが重要です。幅広い技術を持っていることも大切ですが、人工知能開発の技術は次々と誕生しており、すべての分野で高い知見を持つのは不可能になると考えられます。業務も細分化しているので、専門性を高めてこれだけは誰にも負けないというスキルを持っていると、案件獲得の際に効果的にアピールできるでしょう。
フリーランスAIエンジニアの将来性
独立後に安定して仕事ができるか心配するAIエンジニアは多いかもしれません。こちらでは、フリーランスAIエンジニアのニーズと将来性について、調査結果などをもとに考察します。
AI人材は不足している
総務省が行った「令和版情報通信白書」によると、2018年の時点では6割以上の企業が、AIシステムやサービスを導入していないと答えています。これは、必要を感じないため導入していないのではなく、AIを使いこなせる人材の不足が要因となっています。調査結果からも、AIエンジニアのニーズは高いということができ、引く手あまたの状態は続くとみられます。それに伴ってフリーランスの案件も増えていくことでしょう。
外部人材の活用が増加
独立行政法人情報処理機構が提出した「IT人材白書2019」によると、AI人材確保の手段として外部委託を有効とした企業が多く、AI人材を獲得できていない企業ほどその傾向が強いようです。企業によっては、AIエンジニアを育てる環境づくりやコストが重くのしかかる場合もあり、即戦力となるフリーランスを含む外部人材の登用は増加するとみられます。そのためAIエンジニアのフリーランスの将来性は明るいものだと言えるでしょう。
AIエンジニアのフリーランスになるのに年齢は関係ある?
結論、年齢は関係はありません。何歳からでもAIエンジニアのフリーランスを目指すことは可能です。ただし、エンジニアとしての就職経験を積みたいと考えた場合、40代や50代の未経験だと、企業としても雇用しにくいケースがあります。ただ、「フリーランス」には何歳でもチャンスがあるので、独学でスキルを身につければ大いに可能性はあるでしょう。
AIを仕事にするためのキャリアノウハウ、機械学習・AIに関するTopics、フリーランス向けお役立ち情報を投稿します。